
REALIZATION OF A SUM OF SEQUENCES 
BY A SUM GRAPH 

BY 

MICHAEL KOREN 

ABSTRACT 

It is shown that the realizability of the sequences q~=(a I .... , an), r  (b 1, ..., b n) 
and ~b + ~u is a sufficient condition for the realizability of ~b + r by a graph with 
a q~-factor if b i "< 1 for i = 1,..., n. The condition is not sufficient in general. A 
necessary and sufficient condition for the realizability of q~ + ~, by a graph 
with a q~-factor is given for the case that q~ is realizable by a star and isolated 
vertices. 

1. Introduction 

All graphs  in this paper  are finite, undirected and without  loops or multiple 

edges. 

G = G(P1 , '",  Pn) denotes a labelled graph  with n vertices PI  , " ' ,  Pn. The degree 

dG(Pi), or  d(Pi) of  a vertex Pi o f  a graph G is the number  o f  edges o f  G, incident 

with P~. 

~(G) = (d(P1), "", d(Pn)) is the degree sequence of  G. The  finite sequence 

~b = (al  , " ' ,  an) is realizable if there exists a g raph  G = G(P1 , '" ,  Pn) such that  

~b = re(G); G is then called a realization of  ~b. 

E(G) denotes the set o f  edges of  G. 

A graph  H(P1 ,.'., Pn) is called a ~-factor  o f  G(PI ,..., In) if  E(H) ~_ E(G) and 

~(H)  = ~. I f  ~b = (1 ,.--, i), then a @factor  is called a 1-factor. 

DEFINITION. Let ~ (a l  , ' " ,  an), @--(b~ ,..., bn) be two finite sequences; a realiza- 

t ion G( P1 ," ", Pn) of  the sequence ~ + ~ = ( a l + b l ," " ,  an df" bn) is a (~,~) realiza- 

tion of  (~b + @) iff G has a @factor  H(PI , '" ,  Pn). 
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REMARK. If  G is a (4,~k) realization then G has also a @-factor K(P1 , '" ,Pn);  

E(K)  = E(G) - E(H).  Hence G is also called a sum graph. 

A forest, as usual, is a graph without circuits, and a tree is a connected forest. 

A star is a tree with at most one vertex of degree greater than 1. 

DEFINITION. A sequence 4 = ( a l  ,...,am) is staric if 4 is realizable by a forest 
consisting of a star and isolated vertices, i.e., if 4 is, up to a permutation, of the 

form (m, 1, ,..., 1, 0 ,..-, 0), where 0 < m < n - 1. 

In this paper we shall investigate the following conjecture: If  4 = (al , ' " ,  an), 

= (bl , ' " ,  bn) and 4 + @ are realizable sequences then 4 + @ has a (4, ~k) realiza- 

tion. (The realizability of 4, @ and 4 + @ is of course a necessary condition for 

the existence of a (4, ~) realization). 

We shall show that the conjecture is true if b, < 1 for i = 1 ,..., n and also if 

4 + ~ is realizable by a forest, but that it is not true in general. We shall also 

provide a necessary and sufficient condition for the existence of a (4, @) realization 

when ~k is staric. 

2. (4, ~/) realization I 

Throughout this paper we shall use the following lemma: 

LEMMA 1. I f 4 = ( a l  , ' " ,  a,) is a realizable sequence and al  > a2 > ,..', > a,, 

then for  every i, 1 < i < n, there exists a realization G~(P t , ' " ,Pn)  o f  4 in which 

the set o f  vertices adjacent to Pi is 

(Pk: 1 < k < ai},  i f  a i < i ,  or 

{Pk: l < k < a~ + l,  k v~ i} i f  ai > i. 

For proofs of Lemma 1 see [-6, Lemma 6], [-3, Lemma (3.2)]. 

THEOREM 1. Let  4 = ( a l , ' " ,  an), ~ = ( b l , " ' ,  bn) and 4 + ~b be three realiz- 

able sequences and let bi < 1 (i = 1 ,..., n). Then 4 + ~O has a (4, ~b) realization.  

COROLLARY 1. A realizable sequence 41 = (cl , ' " ,  cn) has a realization G with 

a 1-factor i f f  4 = (cl - 1 ,..., c n - 1) is realizable. 

PROOF OF COROLLAgY 1. Since 41 and 4 are realizable, ]~"~ = lci and ]~"i = l(ci -1) 

are even. Thus n is even, hence ~ = ( 1,..., 1) is realizable and we can applyTheorem 1 

to 41 = 4 + ~ .  
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REMARK. Corollary 1 was conjectured by Branko Griinbaum; see [4, p. 492]. 

PROOF OF THEOREM 1. Without loss of generality we may assume that both ~b 

and ~b + ~ are nonincreasing: we can obviously reorder the indices so that ~b 

becomes nonincreasing. If~b is nonincreasing and for some i, 1 < i < n, as = a~+l, 

b~ = 0 and b~+ 1 = 1, then we may interchange the indices i and i + 1. (If as > as+ 1 

then as + bi > ai+l + b~+l since bi+l < 1.) By a finite number of such inter- 

changes we obtain a nonincreasing reordering of both q~ and tk + ~. 

The proof will proceed by induction on n. If n = 1 then al = bl = 0. Assume 

the theorem is true for all k, k < n. 

Case a. For some i, 1 < i < n, bi = 0. Choose such an i. In order to simplify 

the notation, assume that as < i and let a, = m. (The case a~ >- i is practically 

the same), q~ is realizable, hence by Lemma 1, there exists a realization of q5 in 

which Pi is adjacent to P1, P2,'", P,n. Hence 

qS* = (al - 1, . . . ,a , ,  - 1, am+ l ,..., ai_ i, a~+ l ,..., a,) 

is realizable, q5 + ~, is realizable, hence by Lemma 1 there exists a realization of 

+~b where Pi is adjacent to P i , " ' , P m .  Let 4J*= (b l , . . . , b~_ i ,b~+l , . . .  , bn). 

Then ~b *+ ip* 

= (al + bl-1,..., am+ bin-l, am+ 1 + b,,+ 1,'", as- 1 ~- bi-  1, a~ ~ 1 + b~+ 1 .... ,a~ + bn) 

is realizable. Clearly ~,* is realizable. By the induction hypothesis, ~b* + 4J* has a 

(q~*, if*) realization G*(P1 , " ' ,  P i -  1, Pi+ 1 , ' " ,  Pn)" By adding to G* the vertex Pi and 

connecting it to P1 , '",Pro we obtain a (~b, ~) realization G(P1 , '" ,Pn):  if H* is a 

~b*-factor of G*, then H ( P  1 ,..., P,)  with E ( n )  = E(H*)) td  {(Pi, Ps): 1 < j < m} 

is a ~b-factor of G. 

C a s e b .  bl = b 2  . . . . .  b , =  1. 

In this case al + bl = al + 1 < n - 1, h~nce al _~ n - 2 .  We also assume that 

al > 0, since otherwise ~b = 0 and there is nothing to prove. Let ai = m. 

q~ is realizable; hence ~b* = ( a 2 - 1 , . . . , a m +  l - 1, am+2,'",a~) is realizable 

(compare the proof of Case a). 

Let ~* = (b2, . . . ,bm+l,O, bm+3,...,bn). ~* is clearly realizable, q~ + ~ is realiz- 

able, hence q~* + ~* is realizable (compare the proof of Case a). By the induction 

hypothesis ~b* + if* has a (~b*, 4J*) realization G*(P 2 ,..., P,). By adding to G* the 

vertex P1 and connecting it to P2 ,'",Pro+2 we obtain a (q~, ~b)-realization, since 

if H*(P2, '" ,Pn) is a gb*-factor of G*, then H ( P i , . . . , P , )  with E(H)  = E(H*)  

tJ {(el,P,):  2 < i < am+l} is a q~-factor of G. 
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3 (~b, ff) realization H 
For Theorem 2 we need the following lemma. 

LEMMA 2. Let (a = ( a l , " ' , a , )  be a sequence of  nonnegative integers. I f  
" a 1 < k < n, then ~ is realizable by a forest of  k trees i f f  ~ i=t i = 2(n - k) and 

there are f iwcr  than k zeros in ~p. 

The proof of the lemma is straightforward and is left to the reader. 

THEOREM 2. Let (~ = (a l , ' " ,  a,), ~ = (b l , ' " ,  b,) be two realizable sequences 

and suppose (a + tp is realizable by a forest. Then c~ + ~ has a (c~,~O) realization. 

PROOV. Assume q~ + ~ is realizable by a forest with k trees. If  a~ < 1 for 

i = 1, . . . ,n, or bi < 1 for i=1 ,  . . . ,n,  then, by Theorem 1, ~b+~k has a (~b,~O) 

realization. Assume therefore that a t > 1 for some i, bj > 1 for some j. This clearly 

implies that k < n - 1. The proof is by induction on n. I fn  = 1, then a~ = bl = 0. 

Assume the theorem is true for all m, m < n. A forest with at least one edge 

has at least two one-valent vertices. Therefore at least two terms in ~b + ~ are 

equal to 1. Assume, without loss of generality, that a l > at for i = 2,.. . ,  n, al > 1, 

a, = 1, b , = 0 .  Define qS'= ( a l - l ,  az, . . . ,a ,_O=(a~,. . . ,a,[_ O. qS' is realizable, 

by Lemma 1. Define ~ '  = (bi, b2," ' ,  b,-1). ~k' is realizable. 

n--1 

]g (a" + bi) = ~ ( a t + b i ) - Z = Z [ ( n - 1 ) - k ] ,  
i = 1  i = 1  

and there are fewer than k zeros in q~' + ~'.  Therefore, qS' + ~b' is realizable by a 

forest, hence, by the induction hypothesis, qS'+ ~ '  has a (q~',t~') realization 

G'(P~, P2 , '" ,  P,-1).  Adding to G' the vertex P, and connecting it to Pa we obtain 

a (~b, ~b) realization. (Compare the proof of Theorem 1.) 

R]~MARK. The (~b, q/) realization need not be a forest, as can be seen from the 

following example: Let ~b = (2, 2, 2, 0, 0) ff = (0, 0, 0, 1, 1). Then ~b + ~b has a 

realization by a tree but the (unique) (qS, ~,) realization is not a forest. 

4. A counterexaznple 
Let q~ = (3,2,2, 1,0). @ has a unique realization G1. Let ~k = (1,0,0,2, 1). @ has 

a unique realization G2. q5 + ~ = (4, 2, 2, 3, 1). ~b + ~ has a unique realization G. 

But (P2, P3) is an edge of GI and is not an edge of G, hence G is not a (~b, r  realiza- 

tion, i.e., q~ + r has no (~, r realization. 

5. A condition for (~b, ~O) realization 

[-3] P. Erd6s and T. Gallai found the following necessary and sufficient 
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condition for a nonincreasing sequence (a I ,..., a,) of  nonnegative integers to be 

realizable: 

(1) k ai is even; 
i = 1  

k (2) ~ a i - j ( j  - 1) __< min(j, ak), ( j  = 1 ,..., n). 
i = l  k = j + l  

For English and French versions of  this result of Erd6s and Gallai, with 

various proofs, see [1, pp. 110-111], [2, pp. 427-429, 433-436, 499, ex. 6.47] and 

[5, pp. 59-61]. 

Condition (2) is equivalent to the following condition: 

J 
(3) E a , - j ( j - 1 )  < = ( l - j ) j +  ~ ak, ( j  = 1 , . . . , n , l = j , j + l , . . . , n )  

i = 1  k = / + l  

[3, (1.4)]. 

For the case of an arbitrary sequence of nonnegativr integers we have to replace 

(3) by 

(4) ~,a i <= ~ a i + s ( n -  l - t) 
iES  l e t  

for all disjoint sets S, T such that ~b ~ S u T _ N, where N = {! ,..., n}, s and 

t are the cardinalities of S and T respectively [6, condition (1.4)]. 

THEOREM 3. Let  c~ = (al , . . . ,a , )  be a sequence o f  nonnegative integers. Let 

= (b l , ' " ,b , )  be staric with b, = m > 1, and assume c~ + ~ is realizable. 

Define for  every pair of  disjoint sets S, T c N, 

f ~ b  i i f  n ( ~ S u T  

d(S,T) = 
0 i f n ~ S U T .  

Then ~ + ~b has a (dp ,~p) realization iff  

(5) d ( S , T ) +  ~,a i <= Y~a t + s ( n - l - t )  
i eS  i v T  

for  all disjoint sets S, T c N .  

REMARK. Condition (5) implies condition (4) for ~b, hence (5) is a sufficient 

condition for the realizability of ~b. 

PROOF. First we shall prove the necessity of  condition (5). 

If  n ~ T u S then d(S, T) = 0, so in this case (5) is necessary for the realization 
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of (O. Suppose n r S tAT. Let G* be a ((O, ~) realization, with a ~k-factor K*. The 

number of edges of K* connecting Pn to vertices of {P~ : i ~ T} is evidently 

~]~rbi .  (Note that b~ < 1 for i ~T.)  By removing from G* these edges of 

K*, we obtain a graph G. In G we have, by (4) : 

but 

and 

hence 

Z d(P~) < Z d(Pi) + s(n - l - t) ,  
i ~ S  i ~ T  

~, d(Pi) = Y~ (a i + b~) = d ( S ,  T )  + ~, a i 
i e S  i ~ S  i e S  

Z d (P i )  = ]~ ai, 
l e T  l e T  

d(S, T) + Y_, a i <  E ai + s(n - l - t ) .  
i ~ S  l e T  

Now we shall prove the sufficiency of condition (5): Let M be the subset of 

{ 1 , . . . , n - 1 }  such that that i~ M iff b~=l .  We assume that M = { i l , . . . , i , , }  

where l  < i t < i 2 < . . . < i s < n - l .  Sinceb~< l f o r i =  1 , . . . , n - l , w e m a y  

assume, without loss of generality, that al > "" > a,-1 and also al + b~ > ... 

> an_x + b ,_ t .  (Compare the proof of Theorem 1.) 

Define, for 0 < k < m, (Ok = (akx , ' " ,  a,k), where 

f 
a i + k  i f i = n  

k a i + 1 i f  i = i 1 ,..., i k 
a i = 

at otherwise. 

Then a ] > a ~ >  > k ( k = 0 , 1 , "  m). = ~ " "  ~ a n - 1  " ,  

In Lemma 3 we shall prove that (Ok is realizable for 0 < k < m. 

Define io = 0, im+x = n. Then (as will be shown in Lemma 4) for some k, 

0 < k < m, we have i k < a, + k < ik+t. Choose such a k. By Lemma 1, (Ok has 

a realization G' in which P, is adjacent to P1,Pz, . . . ,Pa.+R. Adding to G' the 

edges (Pi, ,P,)  for I = k + 1 ,..., m, we obtain a graph G, such that n(G) = (O + ~ ,  

and {(e,.,P.)ll <_ l < m} c_ E(G); i.e., G is a ((O,~) realization. 

We will complete the proof by stating and proving Lemmas 3 and 4. 

LEMMA 3. Let  (O = (a 1,...,an) , ~ = (bx, '" ,b , )  be two sequences, satisfying 

all the requirements o f  Theorem 3, including condition (5). Define (o k for  

0 < k < m as in the proof of  Theorem 3. Then (ok is realizable for  0 < k < m. 
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PROOF. We must show that each sequence q5 k satisfies condition (4), i.e., for 

every two disjoint sets S, T ,--N 

~ ,a  k <  ~ ,a  k +  s ( n -  l -  t) (for 0__< k < m).  
i ~ S  i~.T 

Case a. n ~ S .  Suppose that 

k k 
( 6 )  ~Z a i >  Z ai + s(n - l - t) . 

'S T 

Since we assume that q~ + ~ is realizable, inequality (4) for ~b,, = q5 + ~ yields 

( 4 ' )  Z a~ <= ~, a? + s(n - 1 - t) . 
S T 

This is a contradiction, since 

and 

k >  m k Z a  m -  E a t = a n - a n = m - k ,  
S S 

n - 1  n - 1  

m k - - s ( n - - l - - t ) <  Z a i " - -  ~, aki m - k  Z a  t + s ( n - ' l - t ) -  Z a  t = = . 
T T i = 1  ~ = 1  

Case b. n ~ T.  Suppose again that 

k ~ ,a  k + s ( n - 1  t) ~ a  i > - . 
S T 

Inequality (4) for ~b o = q~ implies 

(4") ~, ai <= ~, at + s(n - 1 - t) . 
$ T 

This is again a contradiction, since 

and 

n - 1  n - 1  

_ k ]~ ai k k ]~ai < Z a i  = 
$ S i = 1  ~ = 1  

k Z a  k -  Z a  i >  a" - a , , = k .  
T T 

Case c. n ~ S w T .  

In this case inequality (5) yields 

Eaik<= VZam= d ( S , T ) +  ~.a~ <__ ~ ,a  i + s ( n - l - t )  <= ~_,a k + s ( n - l - t ) .  
S S S T T 

LEMMA 4. Let i t , . . . ,  i m be integers, 1 < i t < ... <im < n - 1, and let a~ be 
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a number. I f a , > i l ,  and a , + m < i m  then for some k, 1 < k < m ,  we have 

ik < an + k < i k+ 1" 

PROOF. I f  a n + m < im, then a n + (m - 1) < im. Let l be the smallest nonnega- 

tive index such that an + l < it+ t. By assumption,  an + 0 > i t hence 0 < l < m - I. 

Then  it < an + l, since otherwise an + (l - 1) < a n + l < il, a contradiction to the 

minimality o f  I. 
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